Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
research_details [2019/03/26 12:49]
jthaler [Precision Jet Physics]
research_details [2019/09/04 01:14] (current)
jthaler [Adventures in Superspace]
Line 18: Line 18:
 Machine learning has impacted many scientific fields, and particle physics is no exception. ​ In my research, I aim to enhance the search for new phenomena at colliders by merging the performance of deep learning algorithms with the robustness of "deep thinking"​ approaches. Machine learning has impacted many scientific fields, and particle physics is no exception. ​ In my research, I aim to enhance the search for new phenomena at colliders by merging the performance of deep learning algorithms with the robustness of "deep thinking"​ approaches.
  
-  * **The Metric Space of Collider Events**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\ [[https://​arxiv.org/​abs/​1902.02346|arXiv:​1902.02346]]. ​   +  * **The Metric Space of Collider Events**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.123.041801|Phys. Rev. Lett. 123:041801 (2019)]] ([[https://​physics.aps.org/​articles/​v12/​85|Viewpoint]]), ​[[https://​arxiv.org/​abs/​1902.02346|arXiv:​1902.02346]].
  
   * :!: **Energy Flow Networks: Deep Sets for Particle Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\  [[https://​doi.org/​10.1007/​JHEP01(2019)121|JHEP 1901:121 (2019)]], [[https://​arxiv.org/​abs/​1810.05165|arXiv:​1810.05165]].   * :!: **Energy Flow Networks: Deep Sets for Particle Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\  [[https://​doi.org/​10.1007/​JHEP01(2019)121|JHEP 1901:121 (2019)]], [[https://​arxiv.org/​abs/​1810.05165|arXiv:​1810.05165]].
Line 25: Line 25:
  
   * **Classification Without Labels: Learning from Mixed Samples in High Energy Physics**. \\  Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP10(2017)174|JHEP 1710:174 (2017)]], [[https://​arxiv.org/​abs/​1708.02949|arXiv:​1708.02949]].   * **Classification Without Labels: Learning from Mixed Samples in High Energy Physics**. \\  Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP10(2017)174|JHEP 1710:174 (2017)]], [[https://​arxiv.org/​abs/​1708.02949|arXiv:​1708.02949]].
 +
 +
 +===== Quantum Computation for Colliders =====
 +
 +  * **Quantum Algorithms for Jet Clustering**. ​ \\ Annie Y. Wei, Preksha Naik, Aram W. Harrow, and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​1908.08949|arXiv:​1908.08949]].
  
  
Line 119: Line 124:
 ===== 2011 CMS Open Data ==== ===== 2011 CMS Open Data ====
  
-  * **Searching in CMS Open Data for Dimuon Resonances with Substantial Transverse Momentum**. \\ Cari Cesarotti, Yotam Soreq, Matthew J. Strassler, Jesse Thaler, and Wei Xue. \\ [[https://​arxiv.org/​abs/​1902.04222|arXiv:​1902.04222]].+  ​* **Exploring the Space of Jets with CMS Open Data**. \\ Patrick T. Komiske, Radha Mastandrea, Eric M. Metodiev, Preksha Naik, and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​1908.08542|arXiv:​1908.08542]]. 
 + 
 +  ​* **Searching in CMS Open Data for Dimuon Resonances with Substantial Transverse Momentum**. \\ Cari Cesarotti, Yotam Soreq, Matthew J. Strassler, Jesse Thaler, and Wei Xue. \\ [[http://​dx.doi.org/​10.1103/​PhysRevD.100.015021|Phys. Rev. D100:015021 (2019)]], ​[[https://​arxiv.org/​abs/​1902.04222|arXiv:​1902.04222]].
  
 ===== 2010 CMS Open Data ==== ===== 2010 CMS Open Data ====
Line 137: Line 144:
 I work on new ways to probe ultralight axion dark matter (not to be confused with the axion portal below), which requires very different detection techniques than heavy-particle dark matter. ​ I work on new ways to probe ultralight axion dark matter (not to be confused with the axion portal below), which requires very different detection techniques than heavy-particle dark matter. ​
  
-  * **Searching for Axion Dark Matter with Birefringent Cavities**. \\ Hongwan Liu, Brodi D. Elwood, Matthew Evans, and Jesse Thaler. ​ \\ [[https://​arxiv.org/​abs/​1809.01656|arXiv:​1809.01656]].+  * **Searching for Axion Dark Matter with Birefringent Cavities**. \\ Hongwan Liu, Brodi D. Elwood, Matthew Evans, and Jesse Thaler. ​ \\ [[https://​doi.org/​10.1103/​PhysRevD.100.023548| Phys. Rev. D100:023548 (2019)]], ​[[https://​arxiv.org/​abs/​1809.01656|arXiv:​1809.01656]].
  
   * :!: **Broadband and Resonant Approaches to Axion Dark Matter Detection**. \\ Yonatan Kahn, Benjamin R. Safdi, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.141801|Phys. Rev. Lett. 117:141801 (2016)]], [[http://​arxiv.org/​abs/​1602.01086|arXiv:​1602.01086]].   * :!: **Broadband and Resonant Approaches to Axion Dark Matter Detection**. \\ Yonatan Kahn, Benjamin R. Safdi, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.141801|Phys. Rev. Lett. 117:141801 (2016)]], [[http://​arxiv.org/​abs/​1602.01086|arXiv:​1602.01086]].
Line 161: Line 168:
 Dark forces are part of a large paradigm of dark portals connecting visible and hidden sectors of nature. ​ I developed the idea of an "axion portal",​ where dark matter and ordinary matter interact via a light pseudoscalar particle. ​ While dark matter itself is quite difficult to probe in these scenarios, the axion leaves distinction signatures in collider experiments. ​ Axion-like states and stable dark matter arise quite generically in supersymmetric hidden sectors, which can have an interesting effect on the measured cosmic ray spectrum. Dark forces are part of a large paradigm of dark portals connecting visible and hidden sectors of nature. ​ I developed the idea of an "axion portal",​ where dark matter and ordinary matter interact via a light pseudoscalar particle. ​ While dark matter itself is quite difficult to probe in these scenarios, the axion leaves distinction signatures in collider experiments. ​ Axion-like states and stable dark matter arise quite generically in supersymmetric hidden sectors, which can have an interesting effect on the measured cosmic ray spectrum.
  
-  * **Dark ​matter ​from dynamical ​SUSY breaking**.\\ JiJi Fan, Jesse Thaler, and Lian-Tao Wang. \\ [[http://​dx.doi.org/​10.1007/​JHEP06(2010)045|JHEP 1006:045 (2010)]], [[http://​www.arxiv.org/​abs/​1004.0008|arXiv:​1004.0008]].+  * **Dark ​Matter ​from Dynamical ​SUSY Breaking**.\\ JiJi Fan, Jesse Thaler, and Lian-Tao Wang. \\ [[http://​dx.doi.org/​10.1007/​JHEP06(2010)045|JHEP 1006:045 (2010)]], [[http://​www.arxiv.org/​abs/​1004.0008|arXiv:​1004.0008]].
  
   * **Cosmic Signals from the Hidden Sector.**\\ Jeremy Mardon, Yasunori Nomura, and Jesse Thaler.\\ [[http://​link.aps.org/​abstract/​PRD/​v80/​e035013|Phys. Rev. D80:035013 (2009)]], [[http://​www.arxiv.org/​abs/​0905.3749|arXiv:​0905.3749]].   * **Cosmic Signals from the Hidden Sector.**\\ Jeremy Mardon, Yasunori Nomura, and Jesse Thaler.\\ [[http://​link.aps.org/​abstract/​PRD/​v80/​e035013|Phys. Rev. D80:035013 (2009)]], [[http://​www.arxiv.org/​abs/​0905.3749|arXiv:​0905.3749]].
Line 190: Line 197:
  
 ===== Adventures in Superspace ===== ===== Adventures in Superspace =====
 +
 +  * **Circumnavigating Collinear Superspace**. \\ Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​1909.00009|arXiv:​1909.00009]].
  
   * **Navigating Collinear Superspace**. \\  Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\  [[https://​arxiv.org/​abs/​1810.11032|arXiv:​1810.11032]].   * **Navigating Collinear Superspace**. \\  Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\  [[https://​arxiv.org/​abs/​1810.11032|arXiv:​1810.11032]].
research_details.1553604542.txt.gz · Last modified: 2019/03/26 12:49 by jthaler